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We study the surface wave solutions in the problem on natural high frequency oscillations 

of a layer-wise nonhomogeneous semispace whose refraction index has, at first, a maxi- 

mum value which gradually decreases to a minimum and then, beginning from a certain 

depth, assumes finally a constant value. A boundary condition of the third kind is given 

on the surface, and the condition of emission of radiation, at infinity. This leads to quasi- 

intersection of dispersion curves and to the displacement of eigenvalues into a complex 

plane. The latter results in attenuation of waves propagating along the boundary, with 
the rate of attenuation different for various types of waves. During our investigation we 
use the method of joining the solutions of known asymptotics over the intervals, in which 
the index of refraction behaves monotonously. 

Let us consider the propagation of waves in a medium nonhomogeneous in the vertical 
direction, contained in a semispace Z 2 0 and defined by the wave equation 

Here the velocity of the volume waves c(Z) is a sufficiently smooth function of the 
z-Coordinate, it has a minimum at 8 = e, , a maximum 
at z = e, (0 c e, < en) and is constant when a > e3 > e2 

with c’(a) # 0 on the intervals of monotonous behavior 
of c (2) (Fig. 1). We shall seek the solutions of (1) in the 

form of a plane wave with its phase velocity equal to U. 

c’ (r, y, 3, t) = eik(=-W (-_, k, 5) J 3 .4 

Let us introduce the notation 

Fig. 1 n (2) = 1 / c (z), ins (2, a) = 1 - 78% (z) a2 

When a2 0 , we have for I/ 

( 
d 

V”-k*mz(z, o)V=O ‘_-...-- 
- dz ) (3) 

We shall use the condition of third kind 

~+kczv=o (0 <a < i) (4) 

as the boundary condition at 8 = 0 . 
Physically, such a condition is satisfied by the waves on a solid-liquid interface (see 

the candidate dissertation of V. Iu. Zavadskii, Acoustic Institute, M. ,1965). In analogous 
quantum-mechnical problems, this condition is equivalent to an addition of a coupled 
state. 

In the present paper. we study the asymptotic behavior (for k+ ~a). of some roots on 
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the Q-plane of the characteristic.equation of a problem obtained frdm (3) and (4) by 

addition of a condition prevailing when z+= (we easily see that a discrete spectrum 
occupies the interval 0 < tJa <c n( en) , while a continuous spectrum lies in the interval 

? > cn( e3)) . A detailed discussion is given in another paper, here we consider onIy a 

region of phase velocities 0 m Uo where Uo = c (0) ,/l - CX~ is the velocity of a surface 
wave in a homogeneous semispace with C(z) Se(O) (such a wave analogous to a Ray- 

leigh wave in an elastic medium, can be generated by the condition (4) ). Moreover.let 

max (c (e,), c (es))< os < miu (c (31, c (e2)> 

We shall show that in the present case, resonance effects (quasi-transverse) and a shift 
of the eigenvalues into a complex space can be observed. 

Let 1~ be an interval in whichc(Z) behaves monotonously, let t, be a stagnation 

point on 1, (jl = 1,2,3) and let the latter terminate at the right-hand side point eJ , 

We shall introduce the following notation 

sEIj; cp,>O wherrc(z)>a 

where A, (T) is the Airy function and v = 1,2. 

let us replace Eq. (3) with 

Y’ = kBY, * = (n;P $3 y = (k&7’) (5) 

We retain the fundamental matrix Y of (5) on the semiaxis z 2 0 by joining the fun- 
damental matrices yj defined and possessing the following asymptotics on <, 

y: = [E + 0 (It-‘)] wj, 
10 

E=== 01 i ) 
(6) 

We note that since the exact solutions are joined (instead of the more usual principal 
terms of the asymptotic), we can take into account all the errors present in the asymp- 

totic formulas. A solution of (5) satisfying the condition of radiation at 0 >c( e,) , 
z* +CU is obtained from a complex linear combination of the columns of Y. Boundary 

condition at 2 = 0 gives a dispersion equation for 0(k) of the form 

cp+ iY =o (7) 

where U) = 2R (COS kjz + 01) + Sewzkfr (sin kjs + 01) 

Y = - e-‘@* [Ii (sin kja + Or) - 4% .Se--Zbfx (cos kjz -I- O,)] 

R=a-m(0, Q)+O~, S = a f m (0, a> f 01, OI = 0 (k-r) 

jr = 1 mdz, jg=\ v/nidz, 
0 t1 

j3 ==I mdz, /;>o 

Neglecting y in (7) we obtain a family of real dispersion c*urves, which quasi-intersect 

as in p and 21, Presence of Y results in a shift of the roots of the dispersion equation 
into the complex plane and C: s Im U < 0 , the latter condition causes the attenuation of 

waves in the X-direction. Different parts of dispersion curves have different attenuation 
rates. For the waves determined by the character of the boundary condition, we have 

a (k) = - (a -I- 0,) exp (-- 2kjl - 2kj,), a>0 (8) 
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while in the case of waves generated by the waveguide. i. e, by the interval ( t1 , gz), 
we have E (Is) = - (6 -t 0,) exp (- %h-j,), b>O (9) 

This method makes possible a generalization to the case of a multi-extremal func- 

tion ~(2) . The case of decaying waves when ~(8) is monotonous, was studied pre- 

viously by V, Iu. Zavadskii. Under the quantum-mechanical treatment, such solutions 
describe quasi-stationary states 133. 
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Motion of gas behind a detonation wave expanding from the point of ignition 0 (coordi- 

nate origin) in a space filled with an explosive and with a cut-out hollow cone (axis of 
the cone : X = 0 , @ = 0 , 2s 0) , possesses a cylindrical symmetry and is self-similar . 
Consequently, 211 gas-dynamic magnitudes are functions of two independent variables 
5 = r i t, 11 I= z f t, r = Jfz”f (here $ denotes time). These functions satisfy the 

gas-dynamic equations with the corresponding boundary conditions, written in terms of 
these variables. Numerical methods of solution of partial differential equations (in two 
independent variables 5 and q) must however be used to obtain the above magnitudes. 

S. K. Godunov assumed that a region exists on the 5?r, -plane, where the flow coincides 
with the corresponding spherically symmetric flow obtained by Zel’dovich p]. The lat- 
ter flow occurs when a detonation wave expands from the origin 0 , the whole space being 
filled with an explosive. The motion of the gas is. in this case, spherically symmetric and 
self-similar, and determination of gas-dynamic functions reduces to the integration of a 
system of ordinary differential equations with the corresponding boundary conditions. 


